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Abstract—The increasing complexity of high performance com-
puting systems creates high demands on performance tools and
human analysts due to an unmanageable volume of data gathered
for performance analysis. A promising approach for reducing data
volume is classification of data from multiple processes into groups
of similar behavior to aid in analyzing application performance
and identifying hot spots. However, existing approaches for struc-
tural and temporal classification of performance data suffer from
lack of scalability or produce misleading results.

To address this problem, we present a novel and effective struc-
tural similarity measure to efficiently classify data from parallel
processes and introduce a method for efficient storage of the classi-
fied data. Using four examples, we show how existing performance
analysis techniques benefit from our structural classification. Fi-
nally, we present a case study with 15 applications on up to 65,536
parallel processes that demonstrates the generality and scalability
of our classification approach.

I . I N T R O D U C T I O N

Performance analysis is a central part of the software life
cycle for High Performance Computing (HPC) applications.
However, performance analysis can be extremely challenging,
in particular for long-running, large-scale jobs due to the po-
tentially very large volume of performance data collected for
analysis. Performance tools vary in how much information they
collect and ultimately retain, ranging from large, highly-detailed
event traces to compact, high-level profiles. Traces are sequen-
tial, typically time-stamped, records of execution events, and are
useful for uncovering the root causes of performance problems
with a temporal component. On the other hand, profiles typically
provide a summary of execution information, such as the total
amount of time spent in each function, or the average number of
bytes transferred in a particular communication operation, and
are useful for understanding the overall picture of an execution.

Tracing and profiling each have their purpose and benefits, but
both also have drawbacks. In tracing, all details are retained, but
that makes analysis extremely challenging due to the potentially
large numbers of events for a large number of processes. Profiles
only contain summary data, but because the data is reduced
naively, performance differences across time or processes can be
lost, making understanding performance problems impossible.
In each case, the amount of data collected serves the purpose of
the method, but also presents challenges for analysis. We need
to find a middle ground, a way to intelligently reduce the amount
of data for analysis, such that trace analysis is tractable, while

at the same time selectively aggregating data in targeted profiles
with less information loss.

In this paper, we present a new approach that finds such a
middle ground and complements existing methods for analysis
of traces and profiles, while retaining their respective strengths.
To achieve this goal, our approach performs grouping of perfor-
mance data, and automatically compares and categorizes per-
formance measurements of parallel applications. In particular,
we develop a lightweight system that pre-clusters structurally
similar processes into a few distinct groups in preparation
for more advanced analyses, such as a time-based clustering,
alignment-based comparison [24], or comparison based on pro-
files of different executions. By providing only a small number
of groups from possibly thousands of processes we reduce the
workload imposed on successive analysis techniques and focus
their usage on meaningful subsets of processes, resulting in
quicker detection of performance problems.

Our approach is highly scalable, and considers structural dif-
ferences between processes, thereby extracting needed informa-
tion to understand performance differences. Existing approaches
for comparing performance across executions [4], [13], [14],
[19]–[21], [24] either lack scalability or provide no capability to
compare executions with structurally different processes within
a single execution. At the same time, approaches that compare
processes within a program run [4], [11], [13] either do not
consider program structure or lack scalability.

Our contributions in this paper include:

• A similarity measure based on execution structure,
• A method to efficiently group processes using our similar-

ity measure,
• An extended similarity measure that discerns a special

class of differences, e.g. parent-child relations between
processes,

• Usage scenarios that detail how our grouping approach can
aid existing analysis approaches, and

• An application study with performance measurements
from a wide range of applications at up to 65,536 pro-
cesses.

We found that our structural pre-clustering approach can
greatly reduce the amount of data needed for application anal-
ysis. For the traces we analyzed in our application study, most
could be reduced to less than 10 process traces, down from the
original process counts, e.g., 16,384 for PEPC.
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(a) Purely time-based clustering: Processes with no similarity, e.g., threads
and CUDA streams, are clustered together.

(b) Structural pre-clustering: Processes with no similarity are in distinct
groups and not clustered together.

Fig. 1. PIConGPU Analysis. (a) Time-based clustering yields unsatisfactory
results. (b) Structural pre-classification yields higher quality results.

I I . M O T I VAT I N G E X A M P L E

To motivate the importance of considering code structure
in our approach, we consider the problem of comparing the
performance of processes1 with different execution structure.
Figure 1 shows two summary profiles for the same execution
of the PIConGPU application using two different clustering
methods: traditional time-based clustering (top), and our struc-
tural pre-clustering (bottom). PIConGPU uses a combination of
MPI processes, threads, and CUDA [7] streams. In the profiles,
each bar represents a cluster of processes determined to have
similar behavior, with a number next to each bar that indicates
the number of processes in the cluster. The colors represent
different functions, and the relative size of each color block gives
the amount of time spent in that function for the processes in
each cluster.

Figure 1(a) depicts the current state-of-the-art, a purely time-
based clustering from the Vampir [4] suite. In this approach,
processes are clustered solely according to the time spent in
the most time consuming functions without taking program
structure into account. This leads to unintuitive results, since
the clustering does not consider the differences stemming from
PIConGPU using MPI, threads, and CUDA: without this dis-
tinction, the approach classifies threads and CUDA streams as
similar, as shown in the second bar in Figure 1(a), which pro-
hibits comparing their differences. Additionally, the approach
separates MPI processes into three different clusters (bottom
three bars in Figure 1(a)), which further complicates any com-
parative analysis.

Our approach adds this missing structural classification as
a pre-clustering step, before applying time-based clustering.
Figure 1(b) highlights how our pre-clustering step results in
higher quality time-based clusters: now, data from structurally
different processes is classified into individual clusters. The first
cluster contains one MPI process, as it is structurally different
from the other MPI processes. The remaining 16 MPI processes

1In this paper, for brevity we use the term process to refer to any possible
processing element of a parallel application, which may be an MPI process, a
thread, a CUDA stream, or a different type of control flow.

are placed in the second cluster. The third cluster groups the
threads that render simulation output, and the fourth cluster
contains GPU measurement management threads. Finally, all
CUDA streams are grouped together in the fifth cluster.

This example shows that our structural pre-clustering step re-
sults in a more logical and intuitive grouping of processes in the
final time-based clustering. Thus, it can facilitate comparative
analysis performed by analysts, potentially greatly reducing the
time to discover root causes of performance problems.

I I I . R E L AT E D W O R K

While our novel structural pre-classification method is a con-
tribution in and of itself, its true benefit is that it can significantly
enhance the results of existing performance data comparison
approaches. Here, we provide an overview of these existing
approaches, and later, in Section VIII we detail how our method
can benefit these existing approaches.

The tools eGprof [19], Open|SpeedShop [20], Cube [21],
and the prototype by Karavanic and Miller [14] all compare
profiles of executions. While eGprof can compare the call
graphs of two executions, the parallelism that eGprof can handle
is limited. Karavanic and Miller present an experiment manage-
ment system and provide operators for structural differences.
Their tool can analyze application performance across multiple
execution environments and program versions. Cube specializes
this approach with an algebra for comparing, integrating, and
summarizing performance data from multiple sources. It pro-
vides basic arithmetic operations to merge, subtract, and average
data from different experiments.

Both the Intel Trace Analyzer [13] and Vampir [4] can
compare trace files. The Intel Trace Analyzer displays two trace
files together in one view and additionally computes differences
and speedups based on profile information. Similarly, Vampir
enables viewing multiple traces side by side. Additionally, it
provides comparison for the processes of a single execution, as
introduced in Figure 1.

An extension of the CEPBA tool suite [11] and a trace
alignment approach [24] both target a detailed comparison of
the behavior that is included in tracing information. The CEPBA
tool suite extension describes a tool that characterizes computa-
tion phases. It clusters these periods with a common clustering
algorithm. The result is a classification of phases that differ
in instructions-per-second rates. The second trace alignment
approach [24] introduces several metrics for trace comparison.
One of them describes the similarity of two processes’ call
stacks over time. These metrics build on sequence alignment
techniques for parallel traces [23]. In contrast to our approach,
aligning traces is computationally much more expensive, as we
detail in Section VIII. Consequently, trace alignment is limited
to pairs of processes in practice, as opposed to the lightweight
classification that we contribute for large numbers of processes.

Our approach relies on structural information that we derive
from caller-callee relationships and is related to trace compres-
sion approaches by Mohror and Karavanic [16], by Knüpfer [15],
and an extension of ScalaTrace [18]. Mohror and Karavanic [16]
evaluate similarity metrics in the context of trace file compres-
sion. The evaluated metrics identify similar regions, of which



3

only one representative is then stored. Knüpfer [15] proposes the
Compressed Complete Call Graph, a data structure that behaves
like a trace, but internally uses a lossy compression scheme.
The technique is also used to highlight repeating function call
patterns. Finally, the ScalaTrace extension employs comparison
techniques to achieve lossless compression of communication
traces. While these approaches also consider structural behavior,
they target a reduction in trace file size, as opposed to our
lightweight classification of processes.

I V. M E T H O D O L O G Y OV E RV I E W

A good criterion for structural comparison of processes is
information on the invocation of functions, disregarding timing.
This information is available in almost any type of performance
profile. Information on function invocation can be represented
in call trees. These trees represent merged call stacks of all
functions that a process invokes. Differences between the call
trees of two processes provide a measure of similarity. Compar-
ing call trees, however, is computationally expensive and small
differences close to the root of a call tree yield low similarity,
even if large parts of the trees are equal.

Thus, in this work, we use a simplification of the information
contained in a call tree, the so-called call matrix, made up
out of caller/callee function pairs. The size of a call matrix is
independent of application runtime or the process count and is
limited to the squared number of existing functions. For most
applications, this number is less than 1,000, which makes the
call matrix a powerful approach for comparison. Based on the
call matrix, we introduce a similarity measure for comparing
processes.

Scalable structural process classification not only requires a
similarity measure based on a call matrix, but also requires a
scheme that is efficient even for large process counts. Since a
pair-wise comparison of all processes is highly inefficient, we
use concept lattices that stem from formal concept analysis [9]
to store and compute groups of similar processes. This approach
removes the need for pair-wise process comparison. The result
of using the concept lattice is a classification of all processes
into groups with structurally identical behavior, along with a
relation between these groups. In practice, we find our method
generates a low number of groups and therefore provides a
compact representation for structural information that can be
computed scalably for large-scale executions.

Based on the classification from the concept lattice, we then
compute a similarity matrix that contains similarity values
between process groups for comparison. We developed two
similarity measures in this work. Our first measure, pairsim,
compares the overall behavior of two processes. A second
measure, pairsub, highlights parent-child relations between pro-
cesses and sharpens the understanding of similarity that we
provide. These similarity measures are described in detail in
Sections V and VII.

Throughout this paper, we use two running examples to
explain our concepts. These examples are real applications and
use multiple process types in their runs. The first is a run of the
BT [3] fluid dynamics simulation kernel with 16 MPI processes,
which use 15 OpenMP threads each. The second is a particle-
in-cell equation solver named PIConGPU [6]. It uses 17 MPI

proc 1

main

fopeninit fclose

fopen fclose

proc 2

main

init

fopen fclose

Fig. 2. Call trees for two example processes.

processes, 20 threads spawned with the Pthreads API, and 16
CUDA streams on GPGPU devices. The introductory example
of Figure 1 depicts process clusterings for this second example.

V. D E T E R M I N I N G S I M I L A R I T Y

In this section, we outline our definitions of similarity for
the purposes of our process clustering. We begin with general
definitions and follow with development of our first similarity
measure for structure.
A. Structural Similarity of Processes

We determine structural information for a process by exam-
ining the functions that the process invokes during execution.
Then, we group processes based on their structure. To extract the
structural information and perform our grouping, we use the fol-
lowing definitions. Let P denote the set of all processes and let
individual processes be labeled P, P1, P2, P3, . . .. Additionally,
for illustrative purposes, we will use names like process 1
and thread 3 to refer to individual processes in P . Let F
denote the set of the functions that any process invokes. We
label individual functions as F, F1, F2, F3, . . . or for illustrative
purposes with names like main and fopen. We refer to the
power set of a set A as 2A, which is the set of all subsets of A.

The mapping funcs : P → 2F assigns each process the set
of functions that it invokes during an execution. Formally we
have: funcs(P ) := {F ∈ F | F is called at least once by P}.
We consider processes that invoke many common functions as
similar. We express the structural similarity of two processes as
the number of functions that they have in common, divided by
the number of functions that either process calls:

funcsim(P1, P2) :=
| funcs(P1) ∩ funcs(P2) |
| funcs(P1) ∪ funcs(P2) |

Consequently, funcsim maps a pair of processes to a real
number between 0 and 1. We use 1 to express total similarity and
0 to express complete dissimilarity. We call funcsim a similarity
measure. As an example, Figure 2 illustrates call trees of two
processes. In the example, the sets of invoked functions are
identical, i.e.:

funcs(proc 1) = funcs(proc 2)

= {main, init, fopen, fclose}
Consequently, similarity according to funcsim is 1.
B. Structural Similarity Measure

Given the high degree of difference between the two call
trees in Figure 2, a similarity measure that indicates exact
similarity between them is undesirable. Improvement options
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for the similarity measure include consideration of supplied
arguments, global state, and possibly even external influences,
such as incoming messages. Incorporating these factors is hard
due to the sheer size of this influential state space. Therefore,
we use pairs of functions that represent the caller-callee relation
in order to refine our measure. We extend the function funcs
with the function pairs : P → 2F×F . Formally we define it as
pairs(P ) := {(F1, F2) ∈ F × F | F1 calls F2 on P}. The key
advantage of considering the caller-callee relationship is that
we can retain structural information in the form of functions,
their context in the form of the relation, and that we still rely on
a set-based representation that allows us to directly retrieve a
similarity measure pairsim:

pairsim(P1, P2) :=
| pairs(P1) ∩ pairs(P2) |
| pairs(P1) ∪ pairs(P2) |

(1)

Continuing the example in Figure 2, the function pair sets
pairs of the two processes exactly contain the directed edges of
their corresponding call trees, i.e.:

pairs(proc 1) = {ε→ main, main→ init,

main→ fopen, main→ fclose,

init→ fopen, init→ fclose}
pairs(proc 2) = {ε→ main, main→ init,

init→ fopen, init→ fclose}

For readability, we use F1 → F2 to denote a caller-callee pair
(F1, F2). Functions that are a source in the call stack, such as
main, have no caller. We use a virtual root function called ε
to include these source functions in pairs, i.e., ε → main ∈
pairs(proc 1). Based on the results of pairs we can directly
compute the similarity between processes 1 and 2, which is
pairsim(proc 1,proc 2) = 4

6 .
Processes that have a similarity of 1 form groups of similar

processes. We expect that: first, a single execution will exhibit
a reasonably low number of such groups; and second, that the
number of these groups remains about constant when applica-
tion scale increases. This expectation results from the fact that
a wide range of HPC applications rely on a single executable
that is executed by multiple threads, processes, or GPGPU
devices. Consequently, the variation in the structural behavior
that we observe within a single execution or between multiple
executions is limited by the statically compiled executable.
Existing approaches [1], [2] for parallel call stacks support this
expectation. Section IX analyzes a wide range of applications
to evaluate the validity of this assumption.

V I . C O M P U TAT I O N A N D S T O R A G E

A key requirement for scalability of our approach is an
efficient scheme to compute and store similarity information.
Storing function pairs for all processes in a table requires
memory space that increases with scale. Thus, we needed to
find a solution to store input for similarity computations with a
small memory footprint.

A. Concept Lattice

Given that we follow a set-based approach to compute simi-
larity, we use concept lattices from formal concept analysis [9]

TABLE I
A N I N C I D E N C E R E L AT I O N E X A M P L E .

ε→ F1 F1 → F2 F1 → F3

P1 × ×
P2 × ×
P3 × × ×
P4 × ×

in order to store groups of similar processes along with their
function pairs. A concept lattice is based on a formal context [9],
which is a triple (O,A, I), where O is a set of objects, A a
set of attributes, and I ⊆ O × A an incidence relation. The
incidence relation associates each object with a set of attributes.
For process classification, we use the set of processes as the set
of objects and the set of all function pairs as the attributes. A
formal context defines a concept lattice by specifying concepts,
and a partial order on them. A concept lattice can be represented
as a directed acyclic graph where concepts are nodes and the
order on them determines the edges. We illustrate this formalism
using an example. Let (P,A ⊆ F × F , I) be a formal context
with:

P := {P1, P2, P3, P4},
F := {F1, F2, F3},
A := {ε→ F1, F1 → F2, F1 → F3},
I :=

{
(P1, ε→ F1), (P2, F1 → F2), (P2, ε→ F1),

(P2, F1 → F3), (P3, ε→ F1), (P3, F1 → F2),

(P3, F1 → F3), (P4, ε→ F1), (P4, F1 → F3)
}
.

The incidence relation can also be described as a table (Table I).
In the example, every process has the function pair ε→ F1, i.e.,
processes share F1 as their main function. Processes P1 and P3

have the additional pair F1 → F2, i.e., for these processes F1

calls F2. Finally, P2, P3 and P4 also have the pair F1 → F3, i.e.,
for these processes F1 calls F3. Figure 3 illustrates the resulting
concept lattice. It reads as:
• Process sets subsume those that are reachable following

edges downwards;
• Function sets subsume those that are reachable following

edges upwards;
• The top node indicates that all processes share the function

pair ε→ F1;
• The bottom node signifies that only P3 has all function

pairs, and in particular that it includes all function pairs
that P1, P2 and P4 exhibit;

• P1 is different from P2 and P4; and
• P2 and P4 have the same function pairs.

This graph contains redundant information in its labels, e.g.,
processes occur multiple times. Without loss of expressiveness,
we can remove this redundancy to derive the more compact
graph in Figure 4.

Once we remove redundant labels, the resulting lattice has
the property that each object (process) and attribute (function
pair) is contained in the concept lattice exactly once. This is
a general property of every concept lattice and not specific to
our example. Consequently, the nodes of the lattice provide
the process grouping that we desire, since the above property
guarantees that each process belongs to exactly one group.
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({P1, P2, P3, P4}, {ε→ F1})

({P1, P3}, {ε→ F1, F1 → F2})

({P2, P3, P4}, {ε→ F1, F1 → F3})

({P3}, {ε→ F1, F1 → F2, F1 → F3})

Fig. 3. Concept lattice for the incidence relation of Table I (including redundant
information).

P, {ε→ F1}

{P1}, {F1 → F2} {P2, P4}, {F1 → F3}

{P3},A

Fig. 4. Concept lattice for the incidence relation of Table I (without redundant
information).

Existing algorithms can extract concepts and their partial
order from a formal context. One algorithm to create a concept
lattice is Ganter’s Next Closure algorithm [9]. It requires the
complete incidence relation to be present in main memory. As
previously stated, for large-scale executions, this is not desirable.
Thus, we use an iterative algorithm by van der Merwe, Obied-
kov, and Kourie [22]—from here on called van der Merwe’s
algorithm—to generate concept lattices.

To clarify our approach, Figure 5 shows the concept lattice
for an execution of the real-world application BT with 16 MPI
processes, which use 15 OpenMP threads each. Every node
contains a set of processes and a set of function pairs. Since
the names of individual processes or their function pairs are
most accessible to developers of the target application, we only
specify how many processes or function pairs belong to a node,
e.g., procs (15) for a set of 15 processes. Even with 256
overall processes—MPI processes and OpenMP threads—-the
concept lattice for this example remains small. All processes
share 56 common function pairs. OpenMP threads (right)
exhibit different structural behavior than MPI processes (left).
All MPI processes have the same function pairs, except for
process 0, which invokes one additional pair.

Figure 6 depicts the concept lattice for the application
PIConGPU, which uses 17 MPI processes, 20 threads spawned
with the Pthreads API, and 16 CUDA streams. The resulting
lattice, Figure 6, has 20 nodes and 33 edges. The figure high-
lights which nodes contain processes of the different paral-
lel programming paradigms—MPI, Pthreads, and CUDA—that
PIConGPU uses. Nodes with MPI processes are red (left), nodes
with threads are blue (middle), and nodes with CUDA streams
are turquoise (right).

B. Similarity Matrix

A concept lattice provides a process grouping, but does not
provide similarity values for the distinct groups of processes.
Thus, we use the process groups identified in the concept lattice
and compute a similarity matrix from it. This matrix compares

min
pairs (56)

procs (15)
pairs (53)

procs (1)
pairs (1)

procs (240)
pairs (13)

max

Fig. 5. Concept lattice for an execution of the BT kernel with 16 MPI processes
and 15 OpenMP threads per process.

min 

0 

 1 

max 

Fig. 6. Concept lattice for an execution of PIConGPU using 17 MPI processes,
20 threads, and 16 CUDA streams.

equivalence classes, since processes on the same lattice node
yield the same values when compared to other processes. We
obtain function pair similarity (Equation 1) for a node in the
lattice as follows: pairs(P1)∩pairs(P2) is the union of function
pair sets of nodes reachable from both P1’s and P2’s node along
upward-edges. pairs(P1) ∪ pairs(P2) is the union of function
sets of nodes reachable from either P1’s or P2’s node along
upward-edges. During computation, we do not need to compute
these union sets, since each function pair is contained in the
chosen lattice representation exactly once. Thus, we can instead
add up the sizes of the involved sets, which is a key strength of
using concept lattices for storage and grouping.

We use the application PIConGPU to illustrate an exam-
ple similarity matrix. The overall concept lattice in Figure 6
includes 20 nodes, of which 17 have associated processes.
Consequently, the full similarity matrix is 17× 17 entries large.
For readability, we restrict ourselves to just the groups that
include MPI processes. Figure 7 depicts this subgraph of the
overall concept lattice, which only includes nodes important
to computing the similarity of MPI processes. The figure
specifically highlights MPI processes 0 and 1 in red, we will
refer to them in the following.

The subgraph of the lattice has the following properties:
• There are seven groups in total that correspond to the seven

nodes labeled with at least one process;
• MPI process 0 has 11 function pairs in common with the

others (top node) and introduces 66 new function pairs;
• MPI processes 1–16 all share 171 (11 + 160) pairs; and
• The differences between these processes are very small,

since only few new function pairs are introduced at nodes
descending from here.
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pairs (11)

procs (1) : 0
pairs (66)

procs (6)
pairs (160)

pairs (6)procs (3)
pairs (6)

procs (3)
pairs (6)

procs (2)
pairs (2)

procs (1) procs (1) : 1
pairs (2)

max

Fig. 7. Detailed subgraph of the concept lattice from Figure 6.

We use MPI processes 0 and 1 to illustrate a similarity computa-
tion. To calculate | pairs(0)∩ pairs(1) |, Figure 7 highlights the
single common ancestor node for the nodes of MPI processes 0
and 1 with a thick solid line. Therefore, this expression evaluates
to the 11 function pairs that these processes have in common. To
compute | pairs(0)∪pairs(1) |, Figure 7 highlights the ancestor
nodes of MPI processes 0 and 1 with thick lines (dashed or solid).
Thus, this expression evaluates to the sum of all function pairs
in the highlighted nodes. Similarity between MPI processes 0
and 1 is about 4.4%, i.e.: pairsim(0, 1) = 11

11+66+160+6+6+2 .
Table II depicts the similarity matrix for all 7 groups of MPI

processes. Since it is symmetric and every diagonal entry is 1,
we only include the bottom left triangle. The table illustrates that
process 0 is highly dissimilar from all other processes, since it
serves in a master role. All other groups of processes exhibit
very similar structure and have a similarity of 90% or more.

C. Scalability Considerations

Our process classification must first construct a lattice. Af-
terwards, we use the lattice to extract a similarity matrix. To
construct the concept lattice, van der Merwe’s algorithm iter-
atively inserts function pair sets for each process. Based on
the completed concept lattice, for each pair of nodes, with both
nodes having at least one process, we perform an upwards
traversal in the graph. The traversal calculates the numerator
and denominator according to Equation 1. We then compute
the desired fraction for the pair of nodes and, thus, retrieve the
similarity between the two groups that the nodes represent.

The worst-case space complexity of storing a concept lattice,
as shown by Godin et al. [10], is O(2ap) where a is the total
number of attributes and p the process count. Therefore, and
according to van der Merwe et al. [22], the worst-case time
complexity of generating the lattice and computing the similarity
matrix is O(2ap3a).

In practice, as mentioned in the previous section, processes
are expected to fall into few groups. Particularly we expect that
this count is constant across scale. The attribute count is constant
as well, since the number of functions in a program does
not increase with rising process counts or increasing problem
size. The space complexity of storing the lattice is, therefore,
expected to be independent of the process and attribute count,
i.e. O(1). Because similarity matrix computation only depends
on the number of nodes in the lattice, the most expensive part of

TABLE II
S I M I L A R I T Y M AT R I X F O R T H E P R O C E S S G R O U P S O F T H E
P I C O N G P U C O N C E P T L AT T I C E S U B G R A P H I N F I G U R E 7 .

0 1 2,
3

4 5,
9,

13

6,
7,

10
, 1

1,
14

, 1
5

8,
12

, 1
6

0
1 0.04

2, 3 0.04 0.95
4 0.04 0.93 0.96

5, 9, 13 0.05 0.96 0.92 0.90
6, 7, 10, 11, 14, 15 0.05 0.92 0.96 0.93 0.97

8, 12, 16 0.05 0.90 0.92 0.97 0.93 0.97 1.00

our approach is inserting each process’s function pairs into the
lattice. Therefore, the expected time complexity of the lattice
creation and similarity extraction is O(p) with p being the
process count.

We present performance measurements with our scheme in
Section IX. These measurements demonstrate that even at
increasing scale O(p) remains acceptable. However, to handle
cases with millions of processes, a parallel scheme can become
necessary. Algorithms to generate concept lattices in parallel
exist [12], [17]. They suggest feasibility of an algorithm that
creates a concept lattice in O(log p) steps. A straightforward
solution would be to first create multiple lattices in parallel.
These intermediate lattices can then be merged into a final lattice
in a tree-esque fashion.

V I I . S U B S U M P T I O N M E A S U R E

We presented function pair similarity, pairsim, as a measure
of the similarity between processes. To improve this measure,
consider that one process is spawned from another process. Even
if the structural behavior of the spawned process is completely
included in the parent process, the pairsim measure can indicate
low similarity between them. Reasons for this include differ-
ences in the initial portion of call stacks or that the parent process
exhibits additional behavior. Thus, we define the subsumption
measure that identifies cases where structural behavior of one
process is included in another process. This measure is useful
for cases such as:
• A compiler replaces a function call with its implementation

(inlining);
• A process calls additional functions, for example when

printing debug output or writing to disk;
• For a tracing tool, processes were recorded with different

levels of detail due to filtering; and
• Threads are spawned from a process using the fork-join

model.
The subsumption measure does not replace function pair

similarity, but rather adds a second type of comparison. If two
process groups have low function pair similarity, the subsump-
tion measure can differentiate process groups that have distinct
behavior from cases where one group has a subset of the other
groups behavior. Figure 8 shows an example to illustrate this
subsumption. proc 1 calls function F1, which then calls F2,
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proc 1

F1

F2

proc 2

0

F2

Fig. 8. Example call trees, where function F1 has been inlined in proc 2.

0

{proc 1}, {ε→ F1, F1 → F2} {proc 2}, {ε→ F2}

0

Fig. 9. Concept lattice for the function pairs of the call trees in Figure 8.

while for proc 2, F1 is inlined. Figure 9 presents the concept
lattice for this example, showing no similarity between the two
processes.

The subsumption measure enhances the function pair similar-
ity measure to include more behavior information. To achieve
this, we apply the transitive closure ( )+ to the function pair
set of each process to factor out differences in lower call stack
levels. The transitive closure A+ on a set of function pairs
A ⊆ F × F ensures that if F ′ is called by F via zero or
more intermediate functions, A+ includes F → F ′. In the
example, the transitive closure for the function pairs of proc 1
is {ε → F1, ε → F2, F1 → F2}. This procedure has no
significant impact on overheads, since the number of function
pairs is constant, the transitive closure can be computed for all
processes independently, and the size of the resulting lattice does
not increase. Informally, differences between function pair sets
cause lattice nodes to be split. Taking the transitive closure of
two function pair sets can only lessen differences between them,
but never creates new differences.

After computing the transitive closure, we construct the lattice
as before. For the example, Figure 10 presents the concept
lattice that results with transitively closed function pair sets. As
opposed to the overall behavioral classification of the lattice in
Figure 9, this lattice shows that both processes share behavior
in calling function F2, irrespective of the intermediate function
F1.

Based on this lattice of transitively closed function pair sets,
a third step computes the subsumption measure for each pair of
process groups. To sharpen subsumption towards considering
shared behavior, we define the measure pairsub as:

pairsub(P1, P2) :=
| pairs(P1)

+ ∩ pairs(P2)
+ |

| pairs(P2)+ |

Again, if P2’s function pair set is empty, we define the result to
be 1. For the example, the function pair subsumption measure
is 1. This means, proc 1 includes all structural behavior of
proc 2. Asking the reverse yields 1

3 , since proc 2 invokes
fewer functions than proc 1. Use of pairs(P2)

+ as divisor in-
stead of pairs(P1)

+ ∪ pairs(P2)
+ enables computing inclusion

rather than similarity.
To illustrate the subsumption measure we demonstrate it for

{proc 2}, {ε→ F2}

{proc 1}, {ε→ F1, F1 → F2}

Fig. 10. Concept lattice of the transitively closed function pair sets for the
example call trees.

min
procs (240)
pairs (335)

procs (15)
pairs (2102)

max
procs (1)

pairs (547)

Fig. 11. Concept lattice (drawn left to right) of the transitively closed function
pair sets for a BT kernel run utilizing 16 processes and 15 threads each.

the application runs of BT and PIConGPU. For BT, Figure 11,
the subsumption measure highlights that MPI processes 1 to 16
subsume the behavior of the threads. One can, therefore, safely
assume that the total 240 threads perform a subset of the work of
the MPI processes. Consequently, with function pair similarity
we understand that processes differ from threads and with
subsumption-based similarity we then enrich this knowledge
with relating threads as a functional subset of the processes. The
relation between process 1 and 2–16 does not change, process 1
subsumes processes 2–16 with both measures. In contrast for
the PIConGPU run, the subsumption measure highlights that
this application actually uses a functional decomposition, as this
application shows no subsumption. Again, this result enriches
the information that we gain with function pair similarity.

V I I I . B E N E F I T S O F P R E - C L U S T E R I N G

The key benefit of our lightweight structural pre-clustering
method is its ability to significantly improve the result quality of
existing performance data comparison approaches. We describe
the possible improvements from using our method with four use
cases from existing comparison approaches:

1) Additional information for manual analysis,
2) Pre-grouping for time-based clustering approaches,
3) Pre-grouping and differentiation for profile-based compar-

ison of different program runs, and
4) Pre-selection of processes for alignment-based compari-

son.

A. Manual Analysis

To support manual analysis, we provide the user with the
similarity matrix directly. The matrix shows groups of equal
processes and the similarity of the groups according to our
similarity measure. This aids the user in choosing processes on
which to focus during manual inspection. Performance analysis
frameworks such as Paraver [11], Intel Trace Analyzer [13],
and Vampir [4] allow users to specify a set of processes to
inspect. These analysis tools can then work more quickly,
display more meaningful information, or for example, provide
individual statistics and visual comparison of different process
types inside one application run.
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B. Time-based Clustering

The example in Figure 1 introduced time-based clustering [4],
to compare all processes of an execution. This approach groups
processes that exhibit similar timing for the functions that they
invoke. Wide ranges of clustering algorithms support this group-
ing. However, as we found in our example, by only considering
time, this approach can group together processes that share close
to no behavior similarities.

Our approach provides structural information so that pro-
cesses that exhibit starkly different behavior will not be com-
pared meaninglessly. We achieve this by pre-clustering pro-
cesses before applying time-based analysis. Therefore, we first
calculate the similarity matrix and then combine pairs of groups
using a greedy scheme. The scheme iteratively combines groups
that exhibit a high degree of similarity, using a fixed threshold
σ, according to the pairsim similarity measure. We define the
similarity between a process and a group to be the average
similarity weighted by the number of contained processes.

Table II shows the similarity matrix for PIConGPU excluding
CUDA streams and threads. While the matrix directly collapses
processes with absolute function pair similarity into one group,
it still contains multiple distinct groups that have a high degree
of similarity. Applying our greedy scheme with a threshold of
σ = 0.83 yields five groups of processes: One group for MPI
process 0, one group for MPI processes 1–16, two groups for
two different thread types, and one for all CUDA streams. By
applying this pre-clustering we improve the quality of the time-
based analysis in Figure 1(b). This clustering now aids analysts
since it highlights timing variations within each group—with
the shade overlays on the runtime bars.

C. Differential Profiling

Approaches comparing multiple executions [14], [19]–[21]
commonly create one profile for an execution by accumulating
the timing information of all processes. Comparing such profiles
then reveals differences between executions. However, if an
execution has multiple groups of distinctly behaving processes,
the creation of one overall profile can easily hide interesting
features. Assume that an application spawns an extra thread on
each tenth MPI process, e.g., for checkpointing. Given the much
lower number of these threads in comparison to the processes,
say 10 to 100, the profile will largely hide the behavior of the
additional threads, since it will average them out. At the same
time, given a slow I/O subsystem, the behavior of the threads
can easily have a strong impact on the overall performance.

Towards this end, we propose to apply the same pre-clustering
as we use for time-based clustering and to consider behavior
groups when creating a differential profile. Instead of creating
one overall profile, we can then create one profile for each
behavior group. A performance comparison of two executions
then compares matching pairs of behavior groups.

D. Alignment-Based Comparison

The fourth use case for our structural pre-clustering is to
improve alignment-based performance comparison [24]. Align-
ment approaches compare traces to identify where in an ex-
ecution two processes exhibit differing behavior (in terms of

structure) and when they exhibit different execution times. As
opposed to profile-based approaches they show a comparison
over the runtime of the application. In general, alignment of per-
formance traces provides a drastically increased level of detail.
However, current approaches require O(n2) to O(n) time [23]
to align two traces with n events. In many trace data sets, n
is in the order of millions or larger. Exhaustively comparing
all processes of an execution with p processes requires O(p2)
alignments, which is prohibitive.

The pre-clustering of processes with the aforementioned
greedy scheme and a threshold of σ overcomes this limitation.
The distinct behavior groups of our pre-clustering share little
similarity. Consequently, an alignment between processes of
different groups will commonly not be meaningful. Instead, we
propose to compare two pairs of processes from within each
behavior group. The first pair serves to investigate structural
difference within the group and should include two elements of
maximum dissimilarity. If the greedy scheme combines groups
G1, G2, . . . , Gn to a new group G′, then the most dissimilar
processes gi ∈ Gi, gj ∈ Gj is the pair with Gi and Gj having
the lowest similarity score. The pair shows when during the
execution the behavior within a group differs and to which
degree it differs. The second pair of processes that we align
gives two processes with a high degree of difference in their
timing behavior. We propose to calculate a time-based profile
for all processes within a group. We then select two processes
with a high or maximum difference in their profiles.

In summary, using our pre-clustering, instead of aligning all
possible combinations of process pairs, we propose to compare
2 · g pairs of processes where g is the number of groups. As
we will demonstrate in the next section, g remains stable with
rising scale and increasing problem size for a wide range of
applications. Therefore, our approach improves the applicability
of alignment-based performance analysis drastically.

I X . R E S U LT S

We demonstrate the applicability and scalability of our struc-
tural pre-clustering approach in a study with 15 HPC applica-
tions. For this, we extract data from application traces and use
the data to construct concept lattices, as well as to compute
similarity matrices. Note that while we use traces for this
analysis, traces are not required for our structural pre-clustering
method; performance profiles could be used instead.

A. Applicability

We first demonstrate that our technique applies to a variety of
applications with different characteristics. The test applications
are a selection of benchmarks, pseudo-applications, and real-
world applications2. Table III summarizes the results. For each
application, we construct a concept lattice with our function-
pair-based approach. Then we compute the similarity between
all process groups that the lattice identifies. We conducted all
measurements on an Intel Core i5-2520M system with dual

2 HPL ”High-Performance Linpack”, GROMACS ”Groningen Machine for Chemical Simulations”, CCLM ”COSMO
Climate Limited-area Modelling”, COSMO-SPECS COSMO with added cloud microphysics, WRF ”The Weather Research &
Forecast Model”, FD4 dynamic load balancing for COSMO-SPECS and WRF, HOMME ”High-Order Methods Modeling
Environment”, AMG ”Algebraic Multigrid Solver”, IRS ”Implicit Radiation Solver”, LULESH ”Livermore Unstructured
Lagrangian Explicit Shock Hydrodynamics”, ParaDiS ”Parallel Dislocation Simulator”, PIConGPU ”Particle-In-Cell on
Graphics Processing Units”, BT-MZ part of NAS Parallel Benchmarks, HPCC MPI-FFTE part of HPCC benchmark suite,
PEPC ”Pretty Efficient Parallel Coulomb Solver”
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TABLE III
A P P L I C AT I O N A N D S C A L E I M PA C T O N P R E - G R O U P I N G R U N T I M E ,

A S W E L L A S L AT T I C E S I Z E .

Application Result
Name Processes Func. teval Lattice Process

pairs (ms) Nodes Groups
HPL 2,360 8 < 10 2 2
GROMACS 36 1,381 < 10 24 11
CCLM 180 180 < 10 6 3
COSMO-SPECS 100 50 < 10 1 1
WRF 64 774 < 10 2 2
FD4 65,536 55 55 22 14
HOMME 1,024 179 < 10 3 3
AMG2006 1,024 440 66 11 7
IRS 64 989 34 18 7
LULESH 432 406 49 182 35
ParaDiS 128 649 3,486 6,367 74
PIConGPU 39 474 11 60 17
BT-MZ 16 126 < 10 5 3
HPCC MPI-FFTE 128 109 70 7 4
PEPC 16,384 113 15 2 2

channel DDR3 PC3-10600 RAM, using the GNU C Compiler
and -O2 as optimization flag.

For each application, Table III characterizes the total number
of processes and its function pair count on the left. The column
Processes states the total number of processes, which may in-
clude MPI processes, threads, and CUDA streams. On the right
side of the table we depict the results of applying our methods.
The evaluation time teval includes the steps of adding each
process and its function pairs to the lattice, as well as computing
the similarity matrix from the final lattice. For each application,
except ParaDiS, the evaluation time is less than 0.1 seconds.
This underlines the wide applicability of our approach. For 10
out of the 15 applications, the number of process groups is below
ten, even at a scale of 16,384 processes. This result supports
our expectation that the number of process groups is often
independent of scale. The applications ParaDiS and LULESH
exhibit increased numbers of process groups, 74 and 35, respec-
tively. However, lattice construction and similarity computation
remain within an acceptable computational overhead for these
applications. In the next section, we investigate ParaDiS in detail
to highlight the source for the increased number of process
groups. Overall, we see the results of our applicability analysis
as a strong indicator that our assumptions on process group
counts hold for wide ranges of applications.

B. Scaling Study

To analyze the impact of application scale in more detail, we
conduct additional measurements with two benchmarks and one
application: NAS BT-MZ, AMG2006, and ParaDiS. To conduct
measurements on a second hardware platform, we used an Intel
Xeon E5-2690 system with 32–128 GB RAM per board. Hyper-
Threading has been disabled system-wide. For compilation we
used the GNU C Compiler and -O2 as optimization flag. We
execute our process classification approach on one processor
core with a fixed clock rate of 2.9 GHz and disabled turbo boost.

Figure 12 depicts the timing for our structural pre-clustering
across application scale. Note that process numbers in Figure 12
are plotted on a logarithmic scale.

a) NAS BT-MZ: The first study uses the pseudo application
BT-MZ from the NAS Parallel Benchmarks [3]. Figure 12(a)
shows the wallclock computation time for our approach at up to
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Fig. 12. Overheads of our process classification approach across scale.

65,536 processes (4,096 MPI processes plus 61,440 threads).
Since BT-MZ exhibits a very regular function call structure
across all processes, the number of groups and nodes in the
lattice remains constant. The only additional work required for
increasing scale is to add more processes and their function pairs
into the lattice. Calculation time rises linearly with increasing
process count, as we expected for the O(p) complexity that we
derived in Section VI. While the calculation time of 2.5 seconds
remains acceptable, increases in scale may motivate the need for
a parallel implementation as we discussed before.

b) AMG2006: Figure 12(b) depicts computation times for
AMG2006 [8] with up to 4,096 MPI processes. Again, following
our time complexity analysis, we observe an almost linear
increase in runtime, with a maximum of 1.6 seconds. Different
process counts can cause different domain decompositions and
varying iterative refinements. In our measurements, AMG2006
calls between 207 and 217 distinct functions and has 436–483
different function pairs. The variation stems from different code
paths being taken. Due to these variations AMG2006 exhibits
a less regular call structure than BT-MZ. The number of lattice
nodes and groups varies as a consequence.

c) ParaDiS: The third study investigates how our ap-
proach behaves for the Parallel Dislocation Simulator [5]
(ParaDiS). Each ParaDiS process computes on its own domain
with an adaptive load balancer that periodically redistributes
load between domains.

Figure 12(c) depicts classification time for ParaDiS with up
to 4,096 processes. In ParaDiS the function call structure of a
process heavily depends on its individual workload. Particularly,
for runs with 1,024 or more processes we observe increased
lattice node counts as a result. The largest lattice in this study
contains 57,814 nodes and 216 groups. The group counts are
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acceptable, whereas the number of nodes prevents efficient
computation. Computing the similarity matrix of a ParaDiS
run using 4,096 process takes more than 60 seconds. Since our
approach targets pre-clustering of similar processes as an input
for subsequent detailed performance analysis, we consider this
run time to be high.

To prevent this high run time and coarsen the resulting group-
ings, we propose to apply the following approach. We monitor
the number of nodes during lattice construction to detect when
a lattice grows too large. Then, we use functions—our first
similarity measure—instead of function pairs to determine the
degree of similarity. This leads to far fewer lattice nodes and a
coarsening of the grouping. In our tests, this approach decreases
node counts to about 15% of their original size. Additionally, it
reduces the computation time for the similarity matrix to 17%
of the original time. While we have only begun to explore this
approach for reducing computation size and improving group-
ings for problematic applications, we believe it is promising and
plan to explore it and other options further in future work.

X . C O N C L U S I O N S

Performance analysis of HPC applications is a notoriously
difficult task and typically involves inspection and comparison
of potentially large amounts of performance data. To alleviate
this problem, current performance analysis tools perform data
reductions. However, the techniques they use to reduce data
suffer from lack of scalability, or do not consider program execu-
tion structure. Thus, analysts struggle between using inefficient
methods for processing performance data, or using methods that
can inadvertently omit important performance details.

Our solution to this problem is structural pre-clustering, a
fast, scalable, and lightweight approach to group processes of
a parallel execution according to their function call structure.
While our structural pre-clustering approach provides a basis
for comparing processes manually, its key strength lies in its
ability to improve the effectiveness of existing performance
analysis techniques. Our pre-clustering step enhances existing
techniques because it reduces data into intuitive and logical
clusterings before applying the more traditional analysis steps.

In this paper, we demonstrated how our structural pre-
clustering improves the quality of existing analysis tech-
niques, including time-based clustering, differential profiling,
and alignment-based trace comparison. We applied structural
pre-clustering to 15 HPC applications on up to 65,536 parallel
processes, as well as to two particularly challenging applications
that use MPI processes, OpenMP threads, and CUDA streams.
In almost all cases, the number of clusters generated by our
approach remains low and stable for increasing process counts.
We found only one application yielding cluster counts that
increase with scale, and for this scenario we developed a strategy
to avoid this performance degradation. Overall, our approach
yielded small numbers of clusters, less than 10 in most cases
for process counts of up to 16,384, and only 22 clusters for our
65,536 process run of FD4.
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